Real Analysis GCE M

May, 2019

Name:

Exercise 1:

Let V be a normed vector space and S a subset of V. Let S^c be the complement of S. Let x be in S and y be in S^c . The line segment [x, y] is by definition the set

$$\{(1-t)x + ty : t \in [0,1]\}.$$

Show that the intersection of [x, y] and ∂S is non empty, where ∂S is the boundary of S (by definition the boundary of S is the set of points that are in the closure of S and that are not in the interior of S).

<u>Exercise 2</u>: Let (X, \mathcal{A}, μ) be a measure space. Let g be a measurable function defined on X. Set

$$p_g(t) = \mu(\{x \in X : |g(x)| > t\}).$$

(i). If f is in $L^1(X)$ show that there is a constant C > 0 such that $p_f(t) \leq \frac{C}{t}$. (ii). Find a measurable function h defined almost everywhere on \mathbb{R} such that $\exists C > 0$, $p_h(t) \leq \frac{C}{t}$ and h is not in $L^1(\mathbb{R})$.

Exercise 3:

Let $\{f_n\} : [0,1] \to [0,\infty)$ be a sequence of functions, each of which is non-decreasing on the interval [0,1]. Suppose the sequence is uniformly bounded in $L^2([0,1])$. Show that there exists a subsequence that converges in $L^1([0,1])$.

Exercise 4:

Consider the sequence of functions $f_n : [0,1] \to \mathbb{R}$ where $f_1(x) = \sqrt{x}$, $f_2(x) = \sqrt{x + \sqrt{x}}$, $f_3(x) = \sqrt{x + \sqrt{x + \sqrt{x}}}$, and in general $f_n(x) = \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x}}}}$ with *n* roots.

- 1. Show that this sequence converges pointwise on [0,1] and find the limit function f such that $f_n \to f$.
- 2. Does this sequence converge uniformly on [0, 1]? Prove or disprove uniform convergence.