Exercise 1:

Let V be a normed vector space and S a subset of V. Let S^{c} be the complement of S. Let x be in S and y be in S^{c}. The line segment $[x, y]$ is by definition the set

$$
\{(1-t) x+t y: t \in[0,1]\}
$$

Show that the intersection of $[x, y]$ and ∂S is non empty, where ∂S is the boundary of S (by definition the boundary of S is the set of points that are in the closure of S and that are not in the interior of S).

Exercise 2:

Let (X, \mathcal{A}, μ) be a measure space. Let g be a measurable function defined on X. Set

$$
p_{g}(t)=\mu(\{x \in X:|g(x)|>t\}) .
$$

(i). If f is in $L^{1}(X)$ show that there is a constant $C>0$ such that $p_{f}(t) \leq \frac{C}{t}$.
(ii). Find a measurable function h defined almost everywhere on \mathbb{R} such that $\exists C>0$, $p_{h}(t) \leq \frac{C}{t}$ and h is not in $L^{1}(\mathbb{R})$.

Exercise 3:

Let $\left\{f_{n}\right\}:[0,1] \rightarrow[0, \infty)$ be a sequence of functions, each of which is non-decreasing on the interval $[0,1]$. Suppose the sequence is uniformly bounded in $L^{2}([0,1])$. Show that there exists a subsequence that converges in $L^{1}([0,1])$.

Exercise 4:
Consider the sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ where $f_{1}(x)=\sqrt{x}, f_{2}(x)=\sqrt{x+\sqrt{x}}$, $f_{3}(x)=\sqrt{x+\sqrt{x+\sqrt{x}}}$, and in general $f_{n}(x)=\sqrt{x+\sqrt{x+\sqrt{\ldots+\sqrt{x}}}}$ with n roots.

1. Show that this sequence convereges pointwise on $[0,1]$ and find the limit function f such that $f_{n} \rightarrow f$.
2. Does this sequence converge uniformly on $[0,1]$? Prove or disprove uniform convergence.
